A Level Mathematics A H240/02 Pure Mathematics and Statistics

Wednesday 13 June 2018 - Morning

Time allowed: 2 hours

You must have:

- Printed Answer Booklet

You may use:

- a scientific or graphical calculator

INSTRUCTIONS

- Use black ink. HB pencil may be used for graphs and diagrams only.
- Complete the boxes provided on the Printed Answer Booklet with your name, centre number and candidate number.
- Answer all the questions.
- Write your answer to each question in the space provided in the Printed Answer Booklet. If additional space is required, you should use the lined page(s) at the end of the Printed Answer Booklet. The question number(s) must be clearly shown.
- Do not write in the barcodes.
- You are permitted to use a scientific or graphical calculator in this paper.
- Final answers should be given to a degree of accuracy appropriate to the context.
- The acceleration due to gravity is denoted by $\mathrm{gm} \mathrm{s}^{-2}$. Unless otherwise instructed, when a numerical value is needed, use $g=9.8$.

INFORMATION

- The total number of marks for this paper is $\mathbf{1 0 0}$.
- The marks for each question are shown in brackets [].
- You are reminded of the need for clear presentation in your answers.
- The Printed Answer Booklet consists of 16 pages. The Question Paper consists of 12 pages.

PhysicsAndMathsTutor.com

Formulae

A Level Mathematics A (H240)

Arithmetic series

$S_{n}=\frac{1}{2} n(a+l)=\frac{1}{2} n\{2 a+(n-1) d\}$

Geometric series

$S_{n}=\frac{a\left(1-r^{n}\right)}{1-r}$
$S_{\infty}=\frac{a}{1-r}$ for $|r|<1$

Binomial series

$(a+b)^{n}=a^{n}+{ }^{n} \mathrm{C}_{1} a^{n-1} b+{ }^{n} \mathrm{C}_{2} a^{n-2} b^{2}+\ldots+{ }^{n} \mathrm{C}_{r} a^{n-r} b^{r}+\ldots+b^{n} \quad(n \in \mathbb{N})$,
where ${ }^{n} \mathrm{C}_{r}={ }_{n} \mathrm{C}_{r}=\binom{n}{r}=\frac{n!}{r!(n-r)!}$
$(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\cdots+\frac{n(n-1) \cdots(n-r+1)}{r!} x^{r}+\cdots \quad(|x|<1, n \in \mathbb{R})$

Differentiation

$\mathrm{f}(x)$	$\mathrm{f}^{\prime}(x)$
$\tan k x$	$k \sec ^{2} k x$
$\sec x$	$\sec x \tan x$
$\cot x$	$-\operatorname{cosec}^{2} x$
$\operatorname{cosec} x$	$-\operatorname{cosec} x \cot x$

Quotient rule $y=\frac{u}{v}, \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{v \frac{\mathrm{~d} u}{\mathrm{~d} x}-u \frac{\mathrm{~d} v}{\mathrm{~d} x}}{v^{2}}$

Differentiation from first principles

$\mathrm{f}^{\prime}(x)=\lim _{h \rightarrow 0} \frac{\mathrm{f}(x+h)-\mathrm{f}(x)}{h}$

Integration

$\int \frac{\mathrm{f}^{\prime}(x)}{\mathrm{f}(x)} \mathrm{d} x=\ln |\mathrm{f}(x)|+c$
$\int \mathrm{f}^{\prime}(x)(\mathrm{f}(x))^{n} \mathrm{~d} x=\frac{1}{n+1}(\mathrm{f}(x))^{n+1}+c$
Integration by parts $\int u \frac{\mathrm{~d} v}{\mathrm{~d} x} \mathrm{~d} x=u v-\int v \frac{\mathrm{~d} u}{\mathrm{~d} x} \mathrm{~d} x$
Small angle approximations
$\sin \theta \approx \theta, \cos \theta \approx 1-\frac{1}{2} \theta^{2}, \tan \theta \approx \theta$ where θ is measured in radians

Trigonometric identities

$\sin (A \pm B)=\sin A \cos B \pm \cos A \sin B$
$\cos (A \pm B)=\cos A \cos B \mp \sin A \sin B$
$\tan (A \pm B)=\frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \quad\left(A \pm B \neq\left(k+\frac{1}{2}\right) \pi\right)$

Numerical methods

Trapezium rule: $\int_{a}^{b} y \mathrm{~d} x \approx \frac{1}{2} h\left\{\left(y_{0}+y_{n}\right)+2\left(y_{1}+y_{2}+\cdots+y_{n-1}\right)\right\}$, where $h=\frac{b-a}{n}$
The Newton-Raphson iteration for solving $\mathrm{f}(x)=0: x_{n+1}=x_{n}-\frac{\mathrm{f}\left(x_{n}\right)}{\mathrm{f}^{\prime}\left(x_{n}\right)}$

Probability

$\mathrm{P}(A \cup B)=\mathrm{P}(A)+\mathrm{P}(B)-\mathrm{P}(A \cap B)$
$\mathrm{P}(A \cap B)=\mathrm{P}(A) \mathrm{P}(B \mid A)=\mathrm{P}(B) \mathrm{P}(A \mid B) \quad$ or $\quad \mathrm{P}(A \mid B)=\frac{\mathrm{P}(A \cap B)}{\mathrm{P}(B)}$

Standard deviation

$\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}=\sqrt{\frac{\sum x^{2}}{n}-\bar{x}^{2}}$ or $\sqrt{\frac{\sum f(x-\bar{x})^{2}}{\sum f}}=\sqrt{\frac{\sum f x^{2}}{\sum f}-\bar{x}^{2}}$

The binomial distribution

If $X \sim B(n, p)$ then $P(X=x)=\binom{n}{x} p^{x}(1-p)^{n-x}$, Mean of X is $n p$, variance of X is $n p(1-p)$

Hypothesis test for the mean of a normal distribution

If $X \sim \mathrm{~N}\left(\mu, \sigma^{2}\right)$ then $\bar{X} \sim \mathrm{~N}\left(\mu, \frac{\sigma^{2}}{n}\right)$ and $\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \sim \mathrm{~N}(0,1)$

Percentage points of the normal distribution

If Z has a normal distribution with mean 0 and variance 1 then, for each value of p, the table gives the value of z such that $P(Z \leqslant z)=p$.

p	0.75	0.90	0.95	0.975	0.99	0.995	0.9975	0.999	0.9995
z	0.674	1.282	1.645	1.960	2.326	2.576	2.807	3.090	3.291

Kinematics

Motion in a straight line
Motion in two dimensions
$v=u+a t$
$\mathbf{v}=\mathbf{u}+\mathbf{a} t$
$s=u t+\frac{1}{2} a t^{2}$
$\mathbf{s}=\mathbf{u} t+\frac{1}{2} \mathbf{a} t^{2}$
$s=\frac{1}{2}(u+v) t$
$\mathbf{s}=\frac{1}{2}(\mathbf{u}+\mathbf{v}) t$
$v^{2}=u^{2}+2 a s$
$s=v t-\frac{1}{2} a t^{2}$
$\mathbf{s}=\mathbf{v} t-\frac{1}{2} \mathbf{a} t^{2}$

PhysicsAndMathsTutor.com
4
Section A: Pure Mathematics
Answer all the questions.

1 (i) Express $2 x^{2}-12 x+23$ in the form $a(x+b)^{2}+c$.

$$
\begin{aligned}
\text { 1. }_{\text {i) }} 2 x^{2}-12 x+23 & =2\left[x^{2}-6 x+\frac{23}{2}\right] \\
& =2\left[(x-3)^{2}-9+\frac{23}{2}\right] \\
& =2\left[(x-3)^{2}+\frac{5}{2}\right] \\
& =2(x-3)^{2}+5
\end{aligned}
$$

(ii) Use your result to show that the equation $2 x^{2}-12 x+23=0$ has no real roots.
ii $2(x-3)^{2}$ is always positive
So $2(x-3)^{2}+5 \geqslant 5$
Therefore $2(x-3)^{2}+5$ cannot $=0$ so it has noreal roots.
(iii) Given that the equation $2 x^{2}-12 x+k=0$ has repeated roots, find the value of the constant k.
iii for repeated roots, the discriminant equals zero

$$
\begin{aligned}
12^{2}-4(2)(k)=0 & \text { So } 2(x-3)^{2}+5 \geqslant 5 \\
144-8 k=0 & \text { Therefore } 2(x-3)^{2}+5 \text { cannot }=0 \\
8 k=144 & \text { so it has no real roots. } \\
2 k=18 &
\end{aligned}
$$

2 The points A and B have position vectors $\left(\begin{array}{c}1 \\ -2 \\ 5\end{array}\right)$ and $\left(\begin{array}{c}-3 \\ -1 \\ 2\end{array}\right)$ respectively.
(i) Find the exact length of $A B$.

(ii) Find the position vector of the midpoint of $A B$.
ii) $\frac{1}{2}\left(\begin{array}{c}1-3 \\ -2-1 \\ 5+2\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}-2 \\ -3 \\ 7\end{array}\right)=\left(\begin{array}{c}-1 \\ -1.5 \\ 3.5\end{array}\right)$

The points P and Q have position vectors $\left(\begin{array}{l}1 \\ 2 \\ 0\end{array}\right)$ and $\left(\begin{array}{l}5 \\ 1 \\ 3\end{array}\right)$ respectively.
(iii) Show that $A B P Q$ is a parallelogram.

3 Ayesha, Bob, Chloe and Dave are discussing the relationship between the time, t hours, they might spend revising for an examination, and the mark, m, they would expect to gain. Each of them draws a graph to model this relationship for himself or herself.

(i) Assuming Ayesha's model is correct, how long would you recommend that she spends revising?

(ii) State one feature of Dave's model that is likely to be unrealistic.
iii) He will get no marks if be does no revision
(iii) Suggest a reason for the shape of Bob's graph as compared with Ayesha's graph.

(iv) What does Chloe's model suggest about her attitude to revision?

4 Prove that $\sin ^{2}(\theta+45)^{\circ}-\cos ^{2}(\theta+45)^{\circ} \equiv \sin 2 \theta^{\circ}$.

4. $\sin ^{2}(\theta+45)-\cos ^{2}(\theta+45) \equiv \sin 2 \theta$
LHS: using $\cos 2 x=\cos ^{2} x-\sin ^{2} x$
$\sin ^{2}(\theta+45)-\cos ^{2}(\theta+45)=-\cos (2(\theta+45))$
---:

using $\cos (\alpha+\beta)=\cos \alpha \cos \beta-\sin \alpha \sin \beta$
$-\cos (2 \theta+90)=-\cos 2 \theta \cos 90+\sin 2 \theta \sin 90$
$=\sin 2 \theta$
$=$ R HS
Therefore $\sin ^{2}(\theta+45)-\cos ^{2}(\theta+45) \equiv \sin 2 \theta$

5 Charlie claims to have proved the following statement.
"The sum of a square number and a prime number cannot be a square number."
(i) Give an example to show that Charlie's statement is not true.

Charlie's attempt at a proof is below.
Assume that the statement is not true.
\Rightarrow There exist integers n and m and a prime p such that $n^{2}+p=m^{2}$.
$\Rightarrow p=m^{2}-n^{2}$
$\Rightarrow p=(m-n)(m+n)$
$\Rightarrow p$ is the product of two integers.
$\Rightarrow p$ is not prime, which is a contradiction.
\Rightarrow Charlie's statement is true.
(ii) Explain the error that Charlie has made.

(iii) Given that 853 is a prime number, find the square number S such that $S+853$ is also a square number.
iii) let $S=n^{2}$

The other squared number is $(n+1)^{2}$
$853+n^{2}=(n+1)^{2}$

Find the area of the shaded region.

$853+h^{2}$	$=n^{2}+2 n+1$
852	$=2 n$
n	$=426$
$\Rightarrow \quad S=426^{2}$	$=181476$

6 In this question you must show detailed reasoning.
A curve has equation $y=\frac{\ln x}{x}$.
(i) Find the x-coordinate of the point where the curve crosses the x axis.

when \qquad

$$
\begin{aligned}
& 0=\frac{\ln x}{x} \\
& 0=\ln x
\end{aligned}
$$

$$
x=1
$$

\qquad
(ii) The points A and B lie on the curve and have x coordinates 2 and 4. Show that the line $A B$ is parallel to the x-axis.
ii) when $x=2, y=\frac{\ln 2}{2}$

$$
=\frac{\ln 2}{2}
$$

y coordinates ar e the same so the line is parallel to the x axis and gradient $=0$.
(iii) Find the coordinates of the turning point on the curve.
iii) $\frac{d y}{d x}=u v^{\prime}+v u^{\prime}=\frac{x\left(\frac{1}{x}\right)-\ln x(1)}{x^{2}}$

$$
\frac{d y}{d x}=\frac{1-\ln x}{x^{2}}
$$

Stationary point occurs when $\frac{d y}{d x}=0$:
$0=\frac{1-\ln x}{x^{2}}$
$0=1-\ln x$
$\ln x=1$
$x=e \quad \Rightarrow \quad y=\frac{\ln e}{e}=\frac{1}{e}$
Coordinates: $\left(e, \frac{1}{e}\right)$

$$
\frac{d y}{d x}=\frac{v \frac{d u}{d x}-u \frac{d v}{d x}}{v^{2}}
$$

(iv) Determine whether this turning point is a maximum or a minimum.

$\frac{-1}{e^{3}}<0$ hence $x=e$ is a maximum

7 The diagram shows a part $A B C$ of the curve $y=3-2 x^{2}$, together with its reflections in the lines $y=x$, $y=-x$ and $y=0$.

Find the area of the shaded region.

The total shaded area is:

we have worked out the area of $A+B$ but we actually wart the area of A, as $8 A=$ total shaded area

$$
\begin{aligned}
& A=\frac{7}{3}-\frac{1}{2}=\frac{11}{6} \\
& 8 \times A=8 \times \frac{11}{6}=\frac{44}{3}
\end{aligned}
$$

Section B: Statistics
Answer all the questions.

8 (i) The variable X has the distribution $\mathrm{N}(20,9)$.
(a) Find $\mathrm{P}(X>25)$.

$$
\text { 8: a) } \begin{aligned}
& P-N(20,9) \\
& P(X>25)=P\left(\frac{x-20}{3}>\frac{25-20}{3}\right) \\
&=P(z>1.67) \\
&=1-0.9525 \\
&=0.0475
\end{aligned}
$$

(b) Given that $\mathrm{P}(X>a)=0.2$, find a.

$$
\begin{aligned}
& \text { b) } \quad P(X>a)=0.2 \\
& P\left(z>\frac{a-20}{3}\right)=0.2 \\
& \frac{a-20}{3}=0.84 \\
& a=2.52+20 \\
& a=22.5
\end{aligned}
$$

(c) Find b such that $\mathrm{P}(20-b<X<20+b)=0.5$.

c) | | $P(20-b<x<20+b)=0.5$ |
| ---: | :--- |
| $=$ | $P\left(\frac{20-b-20}{3}<\frac{x-20}{3}<\frac{20+b-20}{3}\right)=0.5$ |
| $=$ | $P\left(-\frac{b}{3}<z<\frac{b}{3}\right)=0.5$ |

(ii) The variable Y has the distribution $\mathrm{N}\left(\mu, \frac{\mu^{2}}{9}\right)$. Find $\mathrm{P}(Y>1.5 \mu)$.

ii. | $Y \sim N\left(\mu, \frac{\mu^{2}}{3}\right)$ | |
| ---: | :--- |
| $P(Y>1.5 \mu)$ | $=P\left(\frac{Y-\mu}{\frac{k}{3}}>\frac{1.5 \mu-\mu}{\frac{\mu}{3}}\right)$ |
| | $=P\left(Z>\frac{0.5}{3}\right)$ |
| | $=P(Z>1.5)$ |
| | $=1-0.9332$ |
| | $=0.0668$ |

9 Briony suspects that a particular 6-sided dice is biased in favour of 2. She plans to throw the dice 35 times and note the number of times that it shows a 2 . She will then carry out a test at the 4% significance level.
Find the rejection region for the test.

10 A certain forest contains only trees of a particular species. Dipak wished to take a random sample of 5 trees from the forest. He numbered the trees from 1 to 784. Then, using his calculator, he generated the random digits 14781049 . Using these digits, Dipak formed 5 three-digit numbers. He took the first, second and third digits, followed by the second, third and fourth digits and so on. In this way he obtained the following list of numbers for his sample.

$$
\begin{array}{lllll}
147 & 478 & 781 & 104 & 49
\end{array}
$$

(i) Explain why Dipak omitted the number 810 from his list.
10i) There are only 784 so there is no tree
numbered 810
(ii) Explain why Dipak's sample is not random.

(iii) Carry out the test at the 2% significance level.

mi. | $H_{0}: \mu=4.2$ | |
| ---: | :--- |
| H_{1} | $: \mu<4.2$ |
| $\bar{X} \sim N\left(4.2, \frac{0.8^{2}}{50}\right)$ | |
| $P(\bar{x}<4.0)$ | $=P\left(\frac{\bar{x}-4.2}{\frac{0.8}{50}}<\frac{4.0-4.2}{\frac{0.8}{50}}\right)$ |
| | $=P(Z<-1.77)$ |
| | $=1-0.9616$ |
| | $=0.0384$ |

$$
0.0384>0.02 \text { so do not reject } H_{0}
$$

$$
\begin{aligned}
& \text { Insufficient evidence to suggest that the mean } \\
& \text { height of the trees is less than } 4.2 \mathrm{~m}
\end{aligned}
$$

11 Christa used Pearson's product-moment correlation coefficient, r, to compare the use of public transport with the use of private vehicles for travel to work in the UK.
(i) Using the pre-release data set for all 348 UK Local Authorities, she considered the following four variables.

Number of employees using public transport	x
Number of employees using private vehicles	y
Proportion of employees using public transport	a
Proportion of employees using private vehicles	b

(a) Explain, in context, why you would expect strong, positive correlation between x and y.
11.) a) Both the number of employees using public transport
and the number using private transport will depend on the population of the LA
(b) Explain, in context, what kind of correlation you would expect between a and b.
b) Negative. The more people who we public transport, the less people there are using private
\qquad
(ii) Christa also considered the data for the 33 London boroughs alone and she generated the following scatter diagram.

One London Borough is represented by an outlier in the diagram.
(a) Suggest what effect this outlier is likely to have on the value of r for the 32 London Boroughs.
ii. a) It will increase r (will become less negative)
(b) Suggest what effect this outlier is likely to have on the value of r for the whole country.
b) It will have very little effect because the

(c) What can you deduce about the area of the London Borough represented by the outlier? Explain your answer.
c) People work close by where they can cycle
or walk in so the area is relatively small.

12 The discrete random variable X takes values 1,2,3, 4 and 5, and its probability distribution is defined as follows.

$$
\mathrm{P}(X=x)= \begin{cases}a & x=1, \\ \frac{1}{2} \mathrm{P}(X=x-1) & x=2,3,4,5, \\ 0 & \text { otherwise },\end{cases}
$$

where a is a constant.
(i) Show that $a=\frac{16}{31}$.
12 i) total probability $=1 . \frac{1}{4} a+\frac{1}{16} a=1$

The discrete probability distribution for X is given in the table.

x	1	2	3	4	5
$\mathrm{P}(X=x)$	$\frac{16}{31}$	$\frac{8}{31}$	$\frac{4}{31}$	$\frac{2}{31}$	$\frac{1}{31}$

(ii) Find the probability that X is odd..

Two independent values of X are chosen, and their sum S is found.
(iii) Find the probability that S is odd.

ii.) \begin{tabular}{rl}
To get an odd sum you need one even number,

and one odd number

\quad

$P($ odd sum $)$ \& $=P(0) P(E)+P(E) P(0)$

\& $=\frac{21}{31}\left(1-\frac{21}{31}\right)+\left(1-\frac{21}{31}\right) \frac{21}{31}$

\& $=2 \times \frac{21}{31} \times \frac{10}{31}$

\& $=\frac{420}{961}$
\end{tabular}

(iv) Find the probability that S is greater than 8 , given that S is odd.
iv) The only combination which is odd and greater
than 8 is with 4 and 5 , in any

order | $P(S>8 \mid S$ is odd $)$ | $=\frac{P(S>8 \text { and } S \text { is odd })}{P(S \text { is odd })}$ |
| ---: | :--- |
| | $=\frac{P(4) P(5)+P(5) P(4)}{420} 996$ |
| | $=\frac{2 \times \frac{2}{31} \times \frac{1}{31}}{420}$ |
| 961 | |

Sheila sometimes needs several attempts to start her car in the morning. She models the number of attempts she needs by the discrete random variable Y defined as follows.

$$
\mathrm{P}(Y=y+1)=\frac{1}{2} \mathrm{P}(Y=y) \quad \text { for all positive integers } y .
$$

(v) Find $\mathrm{P}(Y=1)$.

$a=0.5$
$a=0.5$
(vi) Give a reason why one of the variables, X or Y, might be more appropriate as a model for the number of attempts that Sheila needs to start her car.

13 In this question you must show detailed reasoning.

The probability that Paul's train to work is late on any day is 0.15 , independently of other days.
(i) The number of days on which Paul's train to work is late during a 450-day period is denoted by the

(ii) Show that $\frac{T_{r}}{T_{r+1}}=\frac{17(r+1)}{3(50-r)}$.

ii) | $\frac{T_{r}}{T_{r+1}}$ | $=\frac{\binom{50}{r} \times 0.15^{r} \times 0.85^{50-r}}{\binom{50}{r+1} \times 0.15^{r+1} \times 0.85^{50-(r+1)}}$ |
| ---: | :--- |
| | $=\frac{\frac{50!}{r!(50-r)!} \times 0.15^{r} \times 0.85^{50-r}}{50!} \times 0.15^{r+1} \times 0.85^{49-1 r}$ |
| | $=\frac{1}{(r+1)!(50-r-1)!} \times 0.85$ |
| | $=\frac{1}{r+1} \times 0.15$ |
| | $=\frac{0.85(r+1)}{0.15(50-r)}$ |
| | $=\frac{17(r+1)}{3(50-r)}$ |
| | $=$ |

(iii) The number of days on which Paul's train to work is late during a 50-day period is modelled by the random variable X.
(a) Find the values of r for which $\mathrm{P}(X=r) \leqslant \mathrm{P}(X=r+1)$.

iii. a) $X-B(50,0.15) \quad$ ie. $(0.15+0.85)^{50}$
$P(X=r) \leqslant P(X=r+1)$
$\frac{T_{r}}{T_{r+1}} \leqslant 1$
$\frac{17(r+1)}{3(50-r)} \leqslant 1$
$17(r+1) \leqslant 3(50-r)$

PhysicsAndMathsTutor.com
20

$$
\begin{aligned}
17 r+17 & \leqslant 150-3 r \\
20 r & \leqslant 133 \\
r & \leqslant 6.65
\end{aligned}
$$

(b) Hence find the most likely number of days on which the train will be late during a 50 -day period.
b) Most likely value is $1=6$ or 7

BLANK PAGE

Copyright Information

OCR is committed to seeking permission to reproduce all third-party content that it uses in its assessment materials. OCR has attempted to identify and contact all copyright holders whose work is used in this paper. To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced in the OCR Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download from our public website (www.ocr.org.uk) after the live examination series.
If OCR has unwittingly failed to correctly acknowledge or clear any third-party content in this assessment material, OCR will be happy to correct its mistake at the earliest possible opportunity.
For queries or further information please contact the Copyright Team, First Floor, 9 Hills Road, Cambridge CB2 1GE.
OCR is part of the Cambridge Assessment Group; Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.

